TIM: Teaching Large Language Models to Translate with Comparison

  • TIM: Teaching Large Language Models to Translate with Comparison [52.8]
    本稿では,LLMに翻訳学習を教えるために,サンプルを用いた新しいフレームワークを提案する。 我々のアプローチは、正しい翻訳例と間違った翻訳例をモデルに提示し、好みの損失を使ってモデルの学習をガイドすることである。 本研究は,翻訳タスクのための微調整LDMの新しい視点を提供し,高品質な翻訳を実現するための有望なソリューションを提供する。
    論文  参考訳(メタデータ)   (Mon, 10 Jul 2023 08:15:40 GMT)
  • 正しい翻訳と間違った翻訳間のpreference loss を導入してLLMの翻訳性能を上げる手法の提案。通常のfine tuningにくらべ優れた性能を発揮。新たな言語へのZero-shot Translation能力も向上している点も興味深い。他のタスクのマルチリンガル性能への影響も気になるところ。
  • リポジトリはGitHub – lemon0830/TIM: code for Teaching LM to Translate with Comparison

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です