Summary of a Haystack: A Challenge to Long-Context LLMs and RAG Systems
Summary of a Haystack: A Challenge to Long-Context LLMs and RAG Systems [124.8] 我々は、文書のHaystackを合成する手順を設計し、特定のテキストが文書間で繰り返されることを保証します。 すると、”Summary of a Haystack”(SummHay)タスクは、Haystackを処理し、クエリ、関連する洞察を特定し、ソースドキュメントを正確に引用する要約を生成するシステムを必要とする。 論文参考訳(メタデータ) (Mon, 01 Jul 2024 15:23:42 GMT)
長文・大量の文書を要約できるかに関する(合成データによる)SummHay ベンチマークを構築、様々なLLM及びRAGを比較した論文。「achieving strong coverage of key insights in a large corpus of text does not require retrieval, given a sufficiently capable long-context LLM.」、「for use-cases where citation quality is important, optimizing retrieval is paramount: it removes irrelevant documents from the summarizer’s context, narrowing and focusing options for citation.」とユースケースによってRAGの有効性が変わるよう。Gemini 1.5 ProはRAGなしでも相当有効に機能しているようなことも興味深い。Retrieveの戦略も複数比較されており参考になる。