コンテンツへスキップ
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.7]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。 現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。 近年の研究では、LCSタスクにおけるLLMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (Sat, 26 Oct 2024 00:39:44 GMT)
- LLMを用いたクロスリンガルでの要約方法の検証。低リソースな言語において、SUMMARIZATION, IMPROVEMENT, TRANSLATION and REFINEMENT (SITR)の4段階からなるfour-step zero-shot SITR architectureが有効との結果。