InternVLA-M1, Vlaser

  • InternVLA-M1: A Spatially Guided Vision-Language-Action Framework for Generalist Robot Policy [138.9]
    空間接地とロボット制御のための統合フレームワークであるInternVLA-M1を紹介する。 InternVLA-M1は、(i)2.3M以上の空間的推論データに基づく空間的グラウンドトレーニングと(ii)空間的に誘導された後トレーニングという、2段階のパイプラインを使用する。 結果: InternVLA-M1 は SimplerEnv Google Robot で+14.6%、WidowX で+17%、LIBERO Franka で+4.3% で、空間誘導なしでその変種を上回った。
    論文  参考訳(メタデータ)   (Wed, 15 Oct 2025 17:30:05 GMT)
  • Shanghai AI LaboratoryによるVLAフレームワーク、「On SimplerEnv (Google Robot and WidowX), InternVLA-M1 achieves a new state-of-the-art, surpassing its variant by improving the average success rate by up to +5.9% and +9.8%, respectively. It also demonstrates strong spatial reasoning capabilities across box, point, and trace prediction tasks.」。
  • アーキテクチャは「InternVLA-M1 employs the Qwen2.5-VL- 3B-instruct Bai et al (2025a) as the multimodal encoder for System 2, which is to capture spatial priors. It adopts the diffusion policy Chi et al (2023) (86 M) as the Action Expert (System 1, the fast executor), which effectively models embodiment-specific control. This expert is built on the DINOv2 visual encoder Oquab et al (2023) (21 M) and a lightweight state encoder (0.4 M), forming a compact vision–action model. In total, InternVLA-M1 comprises approximately 4.1B parameters.」と公開モデルの意義を感じる構成。spatial promptingをコアとしてSystem2 → System1を活用する構成。
  • 「To bridge the gap between VLM and VLA, we introduce a Post-Pre-Training phase, where large-scale simulated data is used to pre-train the VLA after VLM pre-training. This stage initializes the action head and facilitates the learning of action representations.」というアプローチも注目。
  • リポジトリはGitHub – InternRobotics/InternVLA-M1: InternVLA-M1: A Spatially Guided Vision-Language-Action Framework for Generalist Robot Policy
  • Vlaser: Vision-Language-Action Model with Synergistic Embodied Reasoning [124.5]
    Vlaser – 相乗的具体的推論機能を備えたビジョン・ランゲージ・アクション・モデルを紹介する。 Vlaserは、様々な具体的推論ベンチマークで最先端のパフォーマンスを達成する。 提案手法は,WidowXベンチマークの最先端結果と,Google Robotベンチマークの競合性能を実現する。
    論文  参考訳(メタデータ)   (Mon, 13 Oct 2025 05:51:22 GMT)
  • こちらはInternVL3 ベース、「In this work, we reveal that current embodied reasoning benchmarks exhibit a significant domain gap when compared to real-world robots. This core domain shift arises from the observation that robots have a fundamentally different viewpoint from that of internet datasets.」とデータの重要性を強調。
  • リポジトリはGitHub – OpenGVLab/Vlaser: Vlaser: Vision-Language-Action Model with Synergistic Embodied Reasoning

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です