コンテンツへスキップ
- When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding [112.4]
CMVC(Cross-Modality Video Coding)は、ビデオ符号化における多モード表現とビデオ生成モデルを探索する先駆的な手法である。 復号化の際には、以前に符号化されたコンポーネントとビデオ生成モデルを利用して複数の復号モードを生成する。 TT2Vは効果的な意味再構成を実現し,IT2Vは競争力のある知覚整合性を示した。
論文 参考訳(メタデータ) (Thu, 15 Aug 2024 11:36:18 GMT)
- ビデオ符号化に対するMLLMの適用、マルチモーダル性を活用した手法であり興味深い。実用化にはハードルがありそうだが、可能性を感じる結果。
- A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.5]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。 本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (Fri, 2 Aug 2024 15:14:53 GMT)
- マルチモーダルなLLMに関するサーベイ。多くの研究機関が取り組んでおり成果も多数。
- 図がとても参考になる。
- SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers [43.2]
SPIQAは、科学研究論文の文脈内で複雑な図形や表を解釈するために設計されたデータセットである。 データセット作成には自動および手動のキュレーションを使用します。 SPIQAは270Kの質問をトレーニング、検証、3つの異なる評価分割に分割する。
論文 参考訳(メタデータ) (Fri, 12 Jul 2024 16:37:59 GMT)
- 科学論文を対象としたマルチモーダルなQAデータセット。zero shotな性能ではものにもよるがGPT-4oが優れているよう。「Furthermore, fine-tuning two open-source systems, LLaVA and InstructBLIP, on the SPIQA training set results in significant improvements over zero-shot evaluations, indicating promising avenues for designing specialized systems for scientific QA in the future.」とfine tuningの有効性を示唆しているのも興味深い。
- リポジトリはGitHub – google/spiqa
- A Survey of Defenses against AI-generated Visual Media: Detection, Disruption, and Authentication [15.9]
深層生成モデルは様々なコンピュータビジョンアプリケーションで顕著な性能を示した。 これらのモデルは、誤情報、偽造、著作権侵害などの悪意ある目的のために使用されることがある。 本稿では,AI生成したビジュアルメディアに対する防衛研究の体系的かつタイムリーなレビューを行う。
論文 参考訳(メタデータ) (Mon, 15 Jul 2024 09:46:02 GMT)
- 「This survey provides a comprehensive overview of research on proactive and passive defenses against AI-generated visual media, covering the mainstream defense tasks of detection, disruption, and authentication, as well as their trustworthiness.」というサーベイ
- Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.8]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。 Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。 これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (Mon, 15 Jul 2024 17:54:37 GMT)
- マルチモーダルエージェントのためのベンチマーク、対象タスクは「494 real-world tasks across the complete data science and engineering workflows (from data warehousing to orchestration)」とこれが自動化されると影響は少なくなさそう(ただしAutoMLなど過去から自動化を目指してきた業務ではある)
- 「The most advanced VLM (GPT-4V) still performs poorly on Spider2-V (achieving 14.0% success rate), rendering it a very challenging benchmark.」と最新モデルでもスコアはかなり悪い。
- リポジトリはSpider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows?
- ChartGemma: Visual Instruction-tuning for Chart Reasoning in the Wild [28.6]
本稿では,PaliGemma上で開発された新しいチャート理解と推論モデルであるChartGemmaを紹介する。 基礎となるデータテーブルに頼るのではなく、ChartGemmaは、チャートイメージから直接生成されたインストラクションチューニングデータに基づいて訓練される。 我々の単純なアプローチは、チャートの要約、質問応答、ファクトチェックにまたがる5ドルのベンチマークで最先端の結果を得る。
論文 参考訳(メタデータ) (Thu, 04 Jul 2024 22:16:40 GMT)
- PaliGemmaのチャート対応バージョン
- リポジトリはhttps://github.com/visnlp/ChartGemmaとのことだが、現時点では404
- MMLongBench-Doc: Benchmarking Long-context Document Understanding with Visualizations [105.1]
MMLongBench-Doc は 1,062 のエキスパート注釈付き質問を含む長文マルチモーダルベンチマークである。 130の長いPDFフォーマットの文書の上に構築されており、平均49.4ページと20,971のテキストトークンがある。 14個のLVLMの実験により、長いコンテキストのDUが現在のモデルに大きく挑戦することを示した。
論文 参考訳(メタデータ) (Mon, 01 Jul 2024 17:59:26 GMT)
- マルチモーダルかつ長文のベンチマーク。GPT-4oの優秀さが目立ち、OCR+LLMを超えている。
- リポジトリはMMLongBench-Doc (mayubo2333.github.io)
- A Survey on Safe Multi-Modal Learning System [10.9]
マルチモーダル学習システム(MMLS)は、様々なモーダル入力から情報を処理し統合する能力で注目を集めている。 安全に関する体系的な研究が欠如していることは、この分野の進歩にとって重要な障壁である。 MMLSの安全性を体系的に分類し評価する最初の分類法を提案する。
論文 参考訳(メタデータ) (Tue, 25 Jun 2024 05:42:43 GMT)
- マルチモーダルなシステムに対する安全性のサーベイ
- この手の対策が必要になってきたことに進化を感じる