日本語版Gemma 2 2B, Liquid Foundation Models (LFMs), Meta Movie Gen, CulturalBench

先週の発表で気になったのはGoogleによる日本語版 Gemma 2の公開(Google Developers Japan: 日本語版 Gemma 2 2B を公開 (googleblog.com))とLiquid AIによるLiquid Foundation Models (LFMs)の発表(Liquid Foundation Models: Our First Series of Generative AI Models)、Metaによる動画生成AI、Meta Movie Genの発表(Meta Movie Gen)だった。

1つ目は言語特化モデルの可能性を感じる小規模・高性能モデルである。「東京科学大学 情報理工学院 情報工学系の岡崎直観教授らの研究チームと協力し、日本におけるオープンモデルの開発支援、および、新しい技術の開拓への取り組みも進めます。」との記載もあり、日本語という言語だけでなく文化理解のような部分にも注目。先週でていたCultualBenchのようなベンチマーク構築の動きもさかん。

2つ目はGPT系アーキテクチャではないLLMとのこと。論文やテクニカルレポートが出ていないので何とも言えない部分があるが、状態空間モデルではなくAttentionを効率化するアプローチのように見える。長文における処理が大幅に効率化されているとのことで期待大。

最後はMetaによるテキストからの動画生成AIで単純な生成だけでなく、編集も可能、元の静止画も指定可能。「On text-to-video generation, we outperform prior state-of-the-art, including commercial systems such as Runway Gen3 (RunwayML, 2024), LumaLabs (LumaLabs, 2024), OpenAI Sora (OpenAI, 2024) on overall video quality」と他モデルよりも良い性能であるとのこと。
(10/19追記) arXivに論文が出ていたので追加。

  • CulturalBench: a Robust, Diverse and Challenging Benchmark on Measuring the (Lack of) Cultural Knowledge of LLMs [75.8]
    文化ベンチについて紹介する: 文化的知識を評価するための1,227の人文的・人文的な質問である。 同じ質問を共有しながら異なる質問をするCulturalBench-EasyとCulturalBench-Hardの2つの設定でモデルを評価する。 人間のパフォーマンス(92.6%の精度)と比較して、カルチャーベンチ・ハードは、最もパフォーマンスの良いモデル(GPT-4o)が61.5%、最悪のモデル(Llama3-8b)が21.4%であるフロンティアのLLMにとってより難しい。
    論文  参考訳(メタデータ)   (Thu, 03 Oct 2024 17:04:31 GMT)
  • 45か国をカバーする文化的ベンチマーク
  • リポジトリはCulturalBench – a Hugging Face Space by kellycyy
  • Movie Gen: A Cast of Media Foundation Models [133.4]
    高品質の1080pHDビデオを生成する基礎モデルのキャストであるMovie Genについて紹介する。 ユーザの画像に基づいて,高精度な命令ベースのビデオ編集やパーソナライズされたビデオの生成などの追加機能を示す。
    論文  参考訳(メタデータ)   (Thu, 17 Oct 2024 16:22:46 GMT)

MinerU: An Open-Source Solution for Precise Document Content Extraction 

  • Modeling Layout Reading Order as Ordering Relations for Visually-rich Document Understanding [34.0]
    本稿では,レイアウト要素の集合上の順序関係としてレイアウト読み込み順序をモデル化する。 レイアウト読み出し順序の改善型の導入による実用的利点を強調するため, 読み出し順序対応型パイプラインを提案する。
    論文  参考訳(メタデータ)   (Sun, 29 Sep 2024 12:00:57 GMT)
  • リポジトリは https://github.com/chongzhangFDU/ROOR とのことだが現時点では404

Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge

  • Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.3]
    多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。 提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。 当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
    論文  参考訳(メタデータ)   (Thu, 03 Oct 2024 17:53:30 GMT)
  • 最近よく使われているLLM as a Judgeで生じるバイアスの整理と定量化に対する提案。「While Claude-3.5 generally shows the greatest resilience to biases, our findings reveal that even highly proficient models can struggle.」という結果は興味深い。(GPT-4oはClaude 3.5より結果が悪かった)
  • リポジトリはJustice or Prejudice? Quantifying Biases in LLM-as-a-Judge (llm-judge-bias.github.io)

Evaluation of OpenAI o1: Opportunities and Challenges of AGI / On The Planning Abilities of OpenAI’s o1 Models: Feasibility, Optimality, and Generalizability

  • Evaluation of OpenAI o1: Opportunities and Challenges of AGI [112.1]
    o1-previewは目覚ましい能力を示し、しばしば人間レベルまたは優れたパフォーマンスを実現した。 このモデルは、様々な分野にわたる複雑な推論と知識の統合を必要とするタスクに優れていた。 総合的な結果は、人工知能への大きな進歩を示している。
    論文  参考訳(メタデータ)   (Fri, 27 Sep 2024 06:57:00 GMT)
  • OpenAI o1の詳細な検証。「Advanced Reasoning Capabilities: o1-preview demonstrated exceptional logical reasoning abilities in multiple fields, including high school mathematics, quantitative investing, and chip design」、「Domain-Specific Knowledge: The model exhibited impressive knowledge breadth across diverse fields such as medical genetics, radiology, anthropology, and geology.」、「It often performed at a level comparable to or exceeding that of graduate students or early-career professionals in these domains.」と高い行がされている。一方で「However, it still lacks the flexibility and adaptability of human experts in these fields.」、「It demonstrated the ability to capture complex expressions like irony and sarcasm, though it still struggles with very subtle emotional nuances.」という指摘も。
  • 関わっている方も多く他分野からの詳細な検証結果、非常に参考になる。
  • On The Planning Abilities of OpenAI’s o1 Models: Feasibility, Optimality, and Generalizability [59.7]
    さまざまなベンチマークタスクでOpenAIのo1モデルの計画能力を評価する。 その結果,o1-preview は GPT-4 よりもタスク制約に順応していることがわかった。
    論文  参考訳(メタデータ)   (Mon, 30 Sep 2024 03:58:43 GMT)
  • 計画能力を対象としたo1の評価。GPT-4oと比べて優れているとのこと。
  • 1. Understanding the Problem、2. Following Constraints、3. State and Memory Management、4. Reasoning and GeneralizationでFindingsがまとめられている。いずれも強力だが、3.については「as problem complexity increased, the model’s state management became less reliable, particularly in tasks involving spatial reasoning across multiple dimensions.」、4.については「While o1-preview showed some promise in its generalization ability, particularly in structured environments like Grippers, its performance in more abstract tasks like Termes revealed substantial limitations. The model struggled with reasoning under conditions where actions and outcomes were less directly tied to the natural language representation of the task, highlighting an area for future improvements.」という指摘も
  • When a language model is optimized for reasoning, does it still show embers of autoregression? An analysis of OpenAI o1 [20.1]
    o1 は OpenAI の新しいシステムで,従来の LLM と異なり,推論に最適化されている。 多くの場合、o1 は従来の LLM よりも大幅に優れており、特に共通タスクの稀な変種に対して大きな改善が加えられている。 しかし、o1は以前のシステムで観測したのと同じ定性的傾向を示している。
    論文  参考訳(メタデータ)   (Wed, 02 Oct 2024 17:50:19 GMT)
  • 「On many of the tasks we considered, o1 performed substantially better than the LLMs we had previously evaluated, with particularly strong results on rare variants of common tasks. However, it still qualitatively showed both of the central types of probability sensitivity discussed in McCoy et al (2023): sensitivity to output probability and sensitivity to task frequency.」という指摘。

Improving Autonomous AI Agents with Reflective Tree Search and Self-Learning

  • Improving Autonomous AI Agents with Reflective Tree Search and Self-Learning [78.4]
    Reflective Monte Carlo Tree Search (R-MCTS)は、AIエージェントの能力を高めるために設計された新しいテストタイムアルゴリズムである。 R-MCTSは1)従来のMCTSを拡張し、対照的な反射を取り入れ、エージェントは過去の相互作用から学ぶことができる。 自己学習によりGPT-4oを微調整することでエージェントの性能を向上させる。
    論文  参考訳(メタデータ)   (Wed, 02 Oct 2024 21:42:35 GMT)
  • 「We propose Reflective Monte Carlo Tree Search (R-MCTS), an extension of classic MCTS that improves the agent’s decision making process on the fly by incorporating reflection over its past task executions, and state estimations using multi-agent-debate」というタイプのモンテカルロ木探索の提案と、それによるSFTでベンチマーク結果を改善。ToTや単純なMCTSより優れた結果。
  • リポジトリはjasonyux/RMCTS-self-learning · GitHub

Contextualized Data-Wrangling Code Generation in Computational Notebooks

  • Contextualized Data-Wrangling Code Generation in Computational Notebooks [131.3]
    我々は、マルチモーダルなコンテキスト依存を明確にしたデータラングリングコード生成例をマイニングするために、CoCoMineという自動アプローチを提案する。 コンテクスト化されたデータラングリングコード生成のための58,221のサンプルを含むデータセットであるCoCoNoteをNotebooksで構築する。 実験結果は、データラングリングコード生成にデータコンテキストを組み込むことの重要性を示す。
    論文  参考訳(メタデータ)   (Fri, 20 Sep 2024 14:49:51 GMT)
  • 「Data wrangling involves cleaning, structuring, and enriching raw data into a desired format for further analysis [96], such as by removing duplicates, casting types, and extracting features [17].」のためのコード合成を目指したデータセット構築とそれを利用したDataCoderの提案。DataCoderのアーキテクチャが「Data Encoder」 + 「Code + Text Encoder」 +「 Decoder」という構成、よく見られるLLM baseなアーキテクチャでないことも興味深い。
  • リポジトリはGitHub – Jun-jie-Huang/CoCoNote: Source Code for ASE-24 paper “Contextualized Data-Wrangling Code Generation in Computational Notebooks”.

One missing piece in Vision and Language: A Survey on Comics Understanding

Exploring Multilingual Probing in Large Language Models: A Cross-Language Analysis

  • Exploring Multilingual Probing in Large Language Models: A Cross-Language Analysis [19.4]
    大規模言語モデル(LLM)の探索技術は主に英語に焦点を合わせており、世界の言語の大部分を見下ろしている。 複数のオープンソースのLCMモデルで実験を行い、探索精度、層間の傾向、および複数の言語に対する探索ベクトル間の類似性を解析した。
    論文  参考訳(メタデータ)   (Sun, 22 Sep 2024 14:14:05 GMT)
  • 多言語での動作解析、「(1) a consistent performance gap between high-resource and lowresource languages, with high-resource languages achieving significantly higher probing accuracy; (2) divergent layer-wise accuracy trends, where high-resource languages show substantial improvement in deeper layers similar to English; and (3) higher representational similarities among high-resource languages, with low-resource languages demonstrating lower similarities both among themselves and with high-resource languages.」とのこと
  • Beyond English-Centric LLMs: What Language Do Multilingual Language Models Think in?  – arXiv最新論文の紹介 (devneko.jp)でも思ったが、この手の動作解析はとても面白い。

Walker: Self-supervised Multiple Object Tracking by Walking on Temporal Appearance Graphs

Judgment of Thoughts: Courtroom of the Binary Logical Reasoning in Large Language Models 

  • Judgment of Thoughts: Courtroom of the Binary Logical Reasoning in Large Language Models [7.5]
    本稿では,二項論理推論タスクに特化して設計された,素早い工学手法について述べる。 この枠組みでは、裁判官、検察官、弁護士が、より信頼性が高く正確な推論を容易にするためにこの技術を利用する。 実験結果から,本手法は既存手法よりも有意に優れていた。
    論文  参考訳(メタデータ)   (Wed, 25 Sep 2024 05:28:05 GMT)
  • 「JoT employs three roles—lawyer, prosecutor, and judge—to facilitate more reliable and accurate reasoning by the model.」という手法の提案
  • 有効なタスクとそうでないタスクがあるよう。三審制とか取り入れると性能が上がったりするんやろうか。