コンテンツへスキップ
- LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.4]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。 本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。 法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (Thu, 16 May 2024 03:04:10 GMT)
- 物理的シミュレーションとLLMを組みあわせ科学的発見をおこなうためのフレームワークの提案。「In conclution, we present Scientific Generative Agent, a bilevel optimization framework: LLMs serve as knowledgeable and adaptable thinkers, formulating scientific solutions like physics equations or molecule structures; concurrently, simulations operate as platforms for experimentation, offering observational feedback and optimizing continuous components like physical parameters.」と、LLMが人間的役割を担っている。
- SORAのような(物理・世界シミュレーターとしての)動画生成モデルと組み合わさると自己完結的に深い思考ができるようになるのだろうか。そこまで行くとAGIの世界になりそうな気がする。。
- Many-Shot In-Context Learning in Multimodal Foundation Models [4.8]
マルチモーダルファンデーションモデルの性能を,少数ショットから多ショットICLまで評価した。 マルチショットICLは、全データセットにわたる少数ショット(100例)のICLと比較して、大幅に改善される。 ゼロショットとマルチショットのICLでは,最大50のクエリでパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (Thu, 16 May 2024 04:02:43 GMT)
- MLLMの評価、評価対象にGPT-4oが入っているのが驚き、対応が速い。全般的にMany shotには効果があるよう。GPT-4oとGemini Proの比較ではGPT-4oが優位でないタスクも多い。また、ManyShotでの特性もかなり異なるようにみえるのが興味深い。
- リポジトリはGitHub – stanfordmlgroup/ManyICL
- Auto-Encoding Morph-Tokens for Multimodal LLM [151.3]
そこで本稿では,MLLMにテキスト生成を指示する視覚的プロンプトとして機能する。 実験により、Morph-Tokensはマルチモーダル理解と生成を同時に行うための新しいSOTAを実現できることが示された。
論文 参考訳(メタデータ) (Fri, 03 May 2024 08:43:06 GMT)
- Morph-Tokensと呼ぶVisionモデルからのトークンから派生した特殊なトークンを用いたMLLMの提案。
- リポジトリはGitHub – DCDmllm/MorphTokens
- NeRF in Robotics: A Survey [95.1]
近年の神経暗黙表現の出現は、コンピュータビジョンとロボティクス分野に急進的な革新をもたらした。 NeRFは、単純化された数学的モデル、コンパクトな環境記憶、連続的なシーン表現などの大きな表現上の利点から、この傾向を引き起こしている。
論文 参考訳(メタデータ) (Thu, 02 May 2024 14:38:18 GMT)
- Neural Radiance Fields のロボット分野への応用に関するサーベイ
- 「NeRF offers a reliable choice for many sub-tasks in robotics, such as scene understanding, reconstruction, dynamic perception, scene editing, object modelling, navigation, and manipulation guidance.」とのこと。
- xLSTM: Extended Long Short-Term Memory [26.6]
1990年代、Long Short-Term Memory (LSTM) の中心概念として、定数エラーカルーセルとゲーティングが導入された。 正規化と安定化を適切に行う指数ゲーティングを導入する。 i)スカラーメモリ,スカラー更新,新しいメモリ混合,(ii)行列メモリと共分散更新ルールと完全に並列化可能なmLSTM。
論文 参考訳(メタデータ) (Tue, 07 May 2024 17:50:21 GMT)
- LSTMの拡張、「xLSTM models perform favorably on language modeling when compared to state-of-the-art methods like Transformers and State Space Models.」と主張。RWKVやMamba、Llamaと詳細な比較を行っているが、より大規模だとどうなるかが気になるところではある。
- The Call for Socially Aware Language Technologies [94.7]
NLPが機能する社会環境の要因、文脈、意味の認識の欠如である。 我々は、NLPが社会意識を発達させる上で大きな課題が残っており、この分野の新しい時代の始まりであると主張している。社会的意識をNLPモデルに統合することで、アプリケーションはより自然で、有用で、安全になり、新しい可能性を開く。
論文 参考訳(メタデータ) (Fri, 03 May 2024 18:12:39 GMT)
- LLM全盛のNLPを社会実装する際に考えるべきものがまとまっている。ガイドラインなどもあるが、NLPのような分野に特化した論文も重要。
- この著者陣をして「As LLMs take a more central role in AI research more broadly, many traditional NLP tasks have become obsolete.」というのも時代を感じるが、「We are more than just language factories, and language plays just one part in our complex social interactions.」は忘れてはいけない視点。
- You Only Cache Once: Decoder-Decoder Architectures for Language Models [132.4]
大規模言語モデルのためのデコーダ・デコーダアーキテクチャであるYOCOを導入する。 YOCOはキーと値のペアを一度だけキャッシュする。 全体的なモデルはデコーダのみのTransformerのように振る舞うが、YOCOは一度だけキャッシュする。
論文 参考訳(メタデータ) (Thu, 09 May 2024 14:12:45 GMT)
- KVキャッシュ・計算ともに効率化可能なDecoder-Decoderモデル。3Bでの検証結果では同規模のOpenLLaMA、StableLMを超え、高速化効果が高い長いコンテキストでのNeedle-in-a-haystackも良好とのこと。ZeroSCROLLS benchmarkで長さが伸びた時も(MambaやHybridH3と異なり)Transformer同等の結果になっているのがすごい。
- リポジトリはunilm/YOCO at master · microsoft/unilm · GitHub
- A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1]
時系列データの研究は、時間とともにトレンドや異常を理解するために不可欠であり、様々な分野にわたる予測的な洞察を可能にする。 近年,拡散モデルが時系列やS時間データマイニングに広く応用されている。 時系列およびS時間データにおける拡散モデルの利用について概説し、それらをモデルカテゴリ、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。 本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (Mon, 29 Apr 2024 17:19:40 GMT)
- Diffusionモデルの時系列データへの応用に関するサーベイ。「They are called after the mathematical process of diffusion, which is commonly used to describe phenomena such as particle movement in a gas or liquid.」との記載を見ると確かに歴史的にはこの応用の方がしっくりくるのか。。
- リポジトリ GitHub – yyysjz1997/Awesome-TimeSeries-SpatioTemporal-Diffusion-Model: A list of current Diffusion Model for Time Series and SpatioTemporal Data with awesome resources (paper, application, review, survey, etc.).、も参考になる。