A Survey on Post-training of Large Language Models
A Survey on Post-training of Large Language Models [185.5] 大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。 これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。 本稿では,5つのコアパラダイムにまたがるPoLMの進化を体系的に追跡する,最初の包括的調査について述べる。 論文参考訳(メタデータ) (Sat, 08 Mar 2025 05:41:42 GMT)
「This paper offers the first exhaustive survey of Post-training Language Models (PoLMs), systematically tracing their trajectory from ChatGPT’s alignment origins in 2018 to DeepSeek-R1’s reasoning milestone in 2025, and affirming their transformative influence on reasoning precision, domain adaptability, and ethical integrity.」とある通り、最新の情報を含むサーベイで57ページととても包括的。