コンテンツへスキップ
- Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.8]
最近のMLセキュリティ文献は、整列型大規模言語モデル(LLM)に対する攻撃に焦点を当てている。 本稿では,LLMエージェントに特有のセキュリティとプライバシの脆弱性を分析する。 我々は、人気のあるオープンソースおよび商用エージェントに対する一連の実証的な攻撃を行い、その脆弱性の即時的な影響を実証した。
論文 参考訳(メタデータ) (Wed, 12 Feb 2025 17:19:36 GMT)
- LLM based Agentsに対する攻撃手法の提案、「In this paper, we argue that LLM-powered agents, especially those that have the ability to communicate with the outside world via web access or external-facing databases, already pose a massive danger to their users which has largely been overlooked by the ML security and privacy community.」とのこと。Agentに対するPhisingが意外とできそうなことに若干驚き。Redditが信頼できるかというと見解は様々だと思うが、現状のAgentへの攻撃有効性が高いというのが意外だった。論文中にもある通り、自動化が進むゆえに開発側の対応体制は重要に思う。
- A Survey of Sample-Efficient Deep Learning for Change Detection in Remote Sensing: Tasks, Strategies, and Challenges [46.6]
深層学習(DL)の急速な発展により,大量のリモートセンシング画像(RSI)上で,自動的かつ高精度かつ堅牢な変化検出(CD)が可能になった。 CD手法の進歩にもかかわらず、実際の文脈における実践的応用は、多様な入力データと応用コンテキストのために制限されている。 本稿では,様々なCDタスクに関する文献的手法と,サンプル限定シナリオでDLベースのCDメソッドをトレーニングおよびデプロイするための戦略とテクニックを要約する。
論文 参考訳(メタデータ) (Wed, 05 Feb 2025 02:36:09 GMT)
- 「this article summarizes the literature methods for different CD tasks and the available strategies and techniques to train and deploy DL-based CD methods in sample-limited scenarios.」というサーベイ(CD=Change Detection)