AI Risk Management Should Incorporate Both Safety and Security

  • AI Risk Management Should Incorporate Both Safety and Security [185.7]
    AIリスクマネジメントの利害関係者は、安全とセキュリティの間のニュアンス、シナジー、相互作用を意識すべきである、と私たちは主張する。 我々は、AIの安全性とAIのセキュリティの違いと相互作用を明らかにするために、統一された参照フレームワークを導入する。
    論文  参考訳(メタデータ)   (Wed, 29 May 2024 21:00:47 GMT)
  • AIのリスクマネジメントにおける「Safety」と「Security」の違いにフォーカスしながら事例や考慮すべきことを整理した論文。
  • 「Unfortunately, this vision is often obfuscated, as the definitions of the basic concepts of “safety” and “security” themselves are often inconsistent and lack consensus across communities.」はその通りだと思う。

Large Language Models Meet NLP: A Survey

  • Large Language Models Meet NLP: A Survey [79.7]
    大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて印象的な機能を示している。 本研究は,以下の課題を探求することによって,このギャップに対処することを目的とする。
    論文  参考訳(メタデータ)   (Tue, 21 May 2024 14:24:01 GMT)
  • 典型的なNLPタスクについてLLMを用いるアプローチを整理したサーベイ。結果がまとめられていないのがやや残念ではあるが、論文がリポジトリ(GitHub – LightChen233/Awesome-LLM-for-NLP)にまとまっているのが非常にありがたい。

Yuan 2.0-M32, Zamba, MAP-Neo

今週も興味深いLLMが発表されている。

  • MoEで小型強力なYuan 2.0-M32
  • SSM(&Transformerのハイブリッド)であるが7Bと実用サイズかつTransformerアーキテクチャの7Bと競合する性能に見えるZamba
  • 中国語-英語ではあるが強力なオープンモデルであるMAP-Neo
  • Yuan 2.0-M32: Mixture of Experts with Attention Router [30.9]
    Yuan 2.0-M32は、Yuan-2.0 2Bと同様のベースアーキテクチャで、32人のエキスパートと2人のエキスパートが活動する混合専門家アーキテクチャを使用している。 新しいルータネットワークであるAttention Routerが提案され、より効率的な専門家の選択のために採用され、従来のルータネットワークと比較して3.8%の精度が向上する。 Yuan 2.0-M32は、コーディング、数学、および様々な専門分野における競争力を示す。
    論文  参考訳(メタデータ)   (Tue, 28 May 2024 09:05:08 GMT)
  • MoEでアクティブパラメータが少ないが優れた性能を主張するLLM。多くのタスクでアクティブパラメータ的に同規模のPhi-3、倍以上の規模のLlama-3 8Bよりスコアが高い。
  • リポジトリはGitHub – IEIT-Yuan/Yuan2.0-M32: Mixture-of-Experts (MoE) Language Model
  • Zamba: A Compact 7B SSM Hybrid Model [11.0]
    Zambaは7B SSMトランスフォーマーハイブリッドモデルである。 Zambaは、公開データセットから1Tトークンをトレーニングする。 Zambaは、同等のトランスフォーマーモデルよりも推論がかなり速い。
    論文  参考訳(メタデータ)   (Sun, 26 May 2024 22:23:02 GMT)
  • SSMとTransformerのハイブリッドで効率的だが強力なLLM
  • リポジトリはZyphra/Zamba-7B-v1 · Hugging Face
  • MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series [86.3]
    私たちはMAP-Neoをオープンソースにしました。これは、4.5Tの高品質トークン上で、スクラッチからトレーニングされた7Bパラメータを持つバイリンガル言語モデルです。
    論文  参考訳(メタデータ)   (Wed, 29 May 2024 17:57:16 GMT)
  • 強力かつオープンなLLM
  • プロジェクトサイトはMAP-Neo、HuggingFace weightはNeo-Models – a m-a-p Collection (huggingface.co)

Agent Design Pattern Catalogue: A Collection of Architectural Patterns for Foundation Model based Agents 

  • Agent Design Pattern Catalogue: A Collection of Architectural Patterns for Foundation Model based Agents [22.9]
    ファウンデーションモデルに対応した生成人工知能はエージェントの開発と実装を容易にする。 本稿では、コンテキスト、力、トレードオフを分析した16のアーキテクチャパターンからなるパターンカタログを提案する。
    論文  参考訳(メタデータ)   (Thu, 16 May 2024 23:24:48 GMT)
  • 生成AIを用いたエージェント構築のためのデザインパターンの紹介
  • 急速に発展している感がある

Why Not Transform Chat Large Language Models to Non-English?

  • Why Not Transform Chat Large Language Models to Non-English? [57.2]
    非英語データの不足は、非英語大言語モデル(LLM)の開発を制限する TransLLMは、転送問題を変換チェーン・オブ・シント(translation chain of-of- Thought)でいくつかの一般的なサブタスクに分割する。 本手法は,シングルターンデータのみを用いて,マルチターンベンチマークMT-benchにおいて,強いベースラインとChatGPTより優れる。
    論文  参考訳(メタデータ)   (Wed, 22 May 2024 18:53:25 GMT)
  • LLMを他の言語に対応させる手法の提案。Target Language Pre-Training → Translation Pre-Training → Transfer Fine-Tuningという流れで翻訳をキーとしている。

MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning

  • MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning [105.1]
    低ランク適応は、大規模言語モデルのためのパラメータ効率の良い微調整法として人気がある。 トレーニング可能なパラメータ数を同じ数に保ちながら、高階更新を実現するために2乗行列を用いるMoRAと呼ばれる新しい手法を提案する。 本手法はメモリ集約型タスクではLoRAより優れ,他のタスクでは同等のパフォーマンスを実現している。
    論文  参考訳(メタデータ)   (Mon, 20 May 2024 15:48:32 GMT)
  • 正方行列を用いたLoRAの改善
  • リポジトリはGitHub – kongds/MoRA

ProtT3: Protein-to-Text Generation for Text-based Protein Understanding

JiuZhang3.0: Efficiently Improving Mathematical Reasoning by Training Small Data Synthesis Models

  • JiuZhang3.0: Efficiently Improving Mathematical Reasoning by Training Small Data Synthesis Models [110.5]
    既存の研究は、事前学習のための大規模な数学関連のテキストを収集したり、巨大な数学問題を合成するために強力なLLMに依存している。 そこで本研究では,数学問題合成のための小さなLLMを効率的に学習し,高品質な事前学習データを効率的に生成する手法を提案する。 我々は、GPT-4 API 9.3k回の呼び出しと4.6Bデータの事前トレーニングのみを必要とする、JuZhang3.0モデルの事前トレーニングに600万の数学問題を合成する。
    論文  参考訳(メタデータ)   (Thu, 23 May 2024 09:43:19 GMT)
  • 数学問題について高品質な合成データを構築し小規模LLMをfinetuning、優れた性能を達成とのこと。商用ではライセンス的に難しい場合も多いが有望なアプローチであると思う。実験でJiuZhang3.0-8B (LLaMA-3-8Bベース) と7B (Mistral-7Bベース)を構築していて早速Llama 3を取り込んでいるのがすごい&両者の性能がタスクによって大きく異なるのが興味深い。
  • リポジトリはGitHub – RUCAIBox/JiuZhang3.0: The code and data for the paper JiuZhang3.0

Implicit In-context Learning

  • Implicit In-context Learning [37.1]
    In-context Learning (ICL)は、大規模な言語モデルに対して、テストクエリの前にいくつかの実演例をプレフィックスすることで、推論中に目に見えないタスクに適応する権限を与える。 Implicit In-context Learning (I2CL)は、従来のICLにまつわる課題に、アクティベーション空間内の実演例を吸収することで対処する革新的なパラダイムである。 I2CLは、ゼロショットコストで数ショットのパフォーマンスを達成し、デモ例のバリエーションに対して堅牢性を示す。
    論文  参考訳(メタデータ)   (Thu, 23 May 2024 14:57:52 GMT)
  • ICLを表すベクトル(context vector)を使うことで高速化。できそうではあるがcontext vectorが持つ情報はどのくらいの有効性があるか&実際のところ何なのかが気になる。
  • リポジトリはGitHub – LzVv123456/I2CL

STAR: A Benchmark for Situated Reasoning in Real-World Videos 

  • STAR: A Benchmark for Situated Reasoning in Real-World Videos [94.8]
    本稿では,実世界のビデオに対して,状況抽象化と論理的質問応答による位置推論能力を評価する新しいベンチマークを提案する。 データセットには、インタラクション、シーケンス、予測、実現可能性の4つのタイプが含まれている。 本稿では,視覚知覚,状況抽象化,言語理解,機能推論を両立させることができる診断型ニューロシンボリックモデルを提案する。
    論文  参考訳(メタデータ)   (Wed, 15 May 2024 21:53:54 GMT)
  • 動画を通したinteraction, sequence, prediction, feasibilityのベンチマーク
  • プロジェクトサイトはSTAR: A Benchmark for Situated Reasoning in Real-World Videos (bobbywu.com)