コンテンツへスキップ
- Which Tricks are Important for Learning to Rank? [21.6]
現在、最先端のLTR(Learning-to-rank)手法は、勾配型決定木(GBDT)に基づいている。 最もよく知られているアルゴリズムは10年以上前に提案されたLambdaMARTである。本稿では,これらの手法を統一的に解析する。 その結果、学習からランクへのアプローチの洞察を得て、新しい勾配アルゴリズムを得ることができた。
論文 参考訳(メタデータ) (Mon, 4 Apr 2022 13:59:04 GMT)- 実用上重要なLearning-to-rankについて比較検討した論文。YetiRank が優れているとの結論。
- (Yandexの論文でもあり)Catboostで利用可能のよう。
- Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language [49.8]
大規模な基盤モデルは、トレーニングされたデータのドメインによって、ユニークな機能を示すことができます。 このモデルの多様性は共生的であり,構造化ソクラテス対話を用いたAIシステム構築に活用可能であることを示す。
論文 参考訳(メタデータ) (Fri, 1 Apr 2022 17:43:13 GMT)
- 非常にクオリティの高い画像を生成するDALL-Eの後継モデル。guidance scaleによるが何らかの軸(写実性、テキストとの類似性、多様性)でGLIDEよりも人間の評価が優れている。下記のようなLimitationも挙げられているが、サンプル画像からは実用レベルに達しているように感じる。
- オブジェクトへの属性反映はGLIDEの方が優れている(色やサイズ、位置関係の反映がイマイチ)
- テキスト生成が弱い(画像中にテキストを入れる場合正しい出力にならないことがある)
- 複雑な画像を生成しにくい(「64×64の画像を生成、アップサンプリングしているためではないか」という記載がある)
- 技術的にはCLIP による分散表現とdiffusion model(GLIDEベース)が活用されているとのこと。
- サイトのURLはDALL·E 2 (openai.com)、論文はdall-e-2.pdf (openai.com)
- Automatic Song Translation for Tonal Languages [23.1]
歌詞翻訳のための新しいベンチマークを開発し,事前学習と3つの復号制約を組み合わせた教師なしASTシステムであるガイド付きAliGnment for Automatic Song Translation (GagaST)を開発した。 自動評価と人的評価の両方で、GagaSTはセマンティクスと歌声のバランスをとることに成功した。
論文 参考訳(メタデータ) 参考訳(全文) (Fri, 25 Mar 2022 02:25:33 GMT)
- PaLM: Scaling Language Modeling with Pathways [180.7]
我々は,パスウェイズ言語モデル PaLM と呼ばれるトランスフォーマー言語モデルを用いて,540ビリオンのパラメータを訓練した。 我々はPathwaysという新しいMLシステムを用いて,6144 TPU v4チップ上でPaLMをトレーニングした。 数百の言語理解および生成ベンチマーク上で、最先端の数発の学習結果を達成し、スケーリングの継続的なメリットを実証する。
論文 参考訳(メタデータ) (Tue, 5 Apr 2022 16:11:45 GMT)- 540-billion parameterで780 billion tokens のデータ& 6144個のTPU v4 を用いて構築された大規模モデル。BIG-benchで平均的な人間のパフォーマンスを上回る。
- Discontinuous improvementsとして報告された内容が興味深く、8B→62Bパラメータへの改善と62B→540Bへの改善においてよく報告される“power law”に沿った改善ではない、非連続的な改善が見られたとのこと。
- 「First, the results presented here suggest that the improvements from scale for few-shot language understanding have not yet plateaued.」とある通りまだ発展が見込めるとのことで面白い。
- Fantastic Questions and Where to Find Them: FairytaleQA — An Authentic Dataset for Narrative Comprehension [136.8]
幼稚園児の物語理解に焦点を当てたデータセットであるFairytaleQAを8年生に紹介する。 FairytaleQAは10,580の明示的で暗黙的な質問で構成されており、278の子供フレンドリーな物語から導かれる。
論文 参考訳(メタデータ) (Sat, 26 Mar 2022 00:20:05 GMT)- 物語ドメインのQAデータセット。規模はそれなりという感じだが、セクション限定を行わない場合、長めのテキストを扱う必要がありそう。
- How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective [74.5]
入力クエリと出力フィードバックだけでブラックボックスモデルを堅牢化する方法? 我々は,ブラックボックスモデルに適用可能な防御操作の一般的な概念を提案し,一階法(FO)認定防衛技術である denoized smoothing (DS) のレンズを用いて設計する。 我々は,Zeroth-Order AutoEncoder-based Denoised Smoothingが既存のベースラインよりも精度,堅牢性,クエリの複雑さを向上できることを実証的に示す。
論文 参考訳(メタデータ) (Sun, 27 Mar 2022 03:23:32 GMT)
- A Comparative Survey of Deep Active Learning [76.0]
Active Learning (AL)は、ラベル付けのための大きなラベル付けされていないデータプールからデータサンプルを順次選択することで、ラベル付けコストを削減するための一連のテクニックである。 ディープラーニング(DL)はデータハングリーであり、DLモデルのパフォーマンスは、より多くのトレーニングデータとともに単調にスケールする。 近年、Deep Active Learning (DAL) は、高価なラベリングコストを最小化しつつ、モデル性能を最大化するための実現可能なソリューションとして上昇している。
論文 参考訳(メタデータ) (Fri, 25 Mar 2022 05:17:24 GMT)
- Listen, Adapt, Better WER: Source-free Single-utterance Test-time Adaptation for Automatic Speech Recognition [65.8]
Test-time Adaptationは、ソースドメインでトレーニングされたモデルに適応して、テストサンプルの予測を改善することを目的としている。 単一発話テスト時間適応 (SUTA) は音声領域における最初のTTA研究である。
論文 参考訳(メタデータ) (Sun, 27 Mar 2022 06:38:39 GMT)
- Multimodal Pre-training Based on Graph Attention Network for Document Understanding [32.6]
GraphDocは、さまざまなドキュメント理解タスクのためのグラフベースのモデルである。 テキスト、レイアウト、画像情報を同時に活用することにより、マルチモーダルフレームワークで事前訓練される。 320万の未ラベル文書から一般的な表現を学習する。
論文 参考訳(メタデータ) 参考訳(全文) (Fri, 25 Mar 2022 09:27:50 GMT)- ドキュメントレイアウトの認識でテキスト・画像・レイアウトなどマルチモーダルなデータを利用、UniDocやSelf-Doc以上の性能を達成とのこと。